The team will build upon that initial sensor design, then they’ll use facilities at Drexel and Team Wendy to test the response of helmets to a wide variety of forces, and how those forces are transmitted to the skull.

To complete the picture of how forces transmitted by a helmet are distributed through the brain to individual cells, Franck will work with researchers at Sandia National Laboratory. The Sandia team who has developed models of the head and neck based on thousands of CT scans. Those models are able to provide insights into how forces are transmitted through soft tissue.

Using his laboratory device, Franck has been able to image the process of cell death during TBI.

“We want put all these pieces together from the macroscopic level of helmets to the microscopic level of cells to get a complete picture of how these injuries occur,” Franck said. “Once we have that, we can start to think about new methods of diagnosis and prevention.”

Based on the injury model developed during this project, the researchers aim to deploy a version of their sensor system in combat theaters and playing fields.

“The idea is that when someone experiences a blow to the head, the helmet transmits the force data to a computer,” Franck said. “A first responder could then look at that data and determine if TBI is likely and how severe it might be.”

Ultimately, the team hopes the data generated by the research can be used to devise a new testing standard for helmets and a new helmet prototype. In developing the prototype, Franck will work closely with Team Wendy and his colleague in the School of Engineering, Haseesh Kesari, who studies the mechanical properties of solid materials.

“What’s exciting to me about this is that it spans the microscale to macroscale,” Franck said. “We’re not aware of any other project that has taken such a comprehensive and tightly integrated approach to understanding how to better prevent these kinds of injuries.”